Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

±³Á¤¿ë ¹Ì´ÏÀÓÇ÷£Æ®ÀÇ Á÷°æ ¹× ½Ä¸³°¢µµ¿¡ µû¸¥ ÀÀ·Â ºÐÆ÷¿¡ °üÇÑ 3Â÷¿ø À¯ÇÑ¿ä¼Ò ºÐ¼®

Three-dimensional finite element analysis for stress distribution on the diameter of orthodontic mini-implants and insertion angle to the bone surface

Korean Journal of Orthodontics 2006³â 36±Ç 3È£ p.178 ~ 187
º¯³ª¿µ, ³²ÀºÇý, ±èÀϱÔ, À±¿µ¾Æ,
¼Ò¼Ó »ó¼¼Á¤º¸
º¯³ª¿µ ( Byoun Na-Young ) - ÀÎÇÏ´ëÇб³ ÀÇ°ú´ëÇÐ Ä¡°úÇб³½Ç
³²ÀºÇý ( Nam Eun-Hye ) - ÀÎÇÏ´ëÇб³ ÀÇ°ú´ëÇÐ Ä¡°úÇб³½Ç
±èÀϱԠ( Kim Il-Kyu ) - ÀÎÇÏ´ëÇб³ ÀÇ°ú´ëÇÐ Ä¡°úÇб³½Ç
À±¿µ¾Æ ( Yoon Young-Ah ) - ÀÎÇÏ´ëÇб³ ÀÇ°ú´ëÇÐ Ä¡°úÇб³½Ç

Abstract

º» ¿¬±¸´Â °íÁ¤¿ø º¸°­À» À§ÇÏ¿© »ç¿ëÇÏ´Â ±³Á¤¿ë ¹Ì´ÏÀÓÇ÷£Æ®ÀÇ Á÷°æ ¹× ½Ä¸³°¢µµ¿¡ µû¸¥ ÀÀ·Â ºÐÆ÷ ¾ç»óÀ» ¾Ë¾Æº¸±â À§ÇÏ¿© ½ÃÇàµÇ¾ú´Ù. ¹Ì´ÏÀÓÇ÷£Æ®ÀÇ Á÷°æ ¹× ÇÇÁú°ñ Ç¥¸é¿¡ ´ëÇÑ ½Ä¸³°¢µµ¿¡ µû¸¥ ÀÀ·Â ºÐÆ÷ ¾ç»óÀ» °üÂûÇϱâ À§ÇÏ¿© 15{times}15{times}20mm^3ÀÇ À°¸éü¿¡¼­ ½Ä¸³µÇ´Â ÇÇÁú°ñÀÇ µÎ²²¸¦ 1.0 mm·Î ÇÏ¿´À¸¸ç, ¹Ì´ÏÀÓÇ÷£Æ®ÀÇ ±æÀ̸¦ 8.0 mm·Î °íÁ¤ÇÏ°í Á÷°æÀº 1.2 mm, 1.6 mm¿Í 2.0 mm, ½Ä¸³°¢µµ´Â ÇÇÁú°ñ Ç¥¸é¿¡ ´ëÇØ 90^{circ},;75^{circ},;60^{circ},;45^{circ} ¹× 30^{circ}ÀÎ 3Â÷¿ø À¯ÇÑ¿ä¼Ò ¸ðµ¨·Î Á¦ÀÛÇÑ ´ÙÀ½, ¹Ì´ÏÀÓÇ÷£Æ® µÎºÎÁ߽ɿ¡ °¢µµ º¯È­ Æò¸é¿¡ ´ëÇÏ¿© ¼öÁ÷ ¹æÇâÀ¸·Î 200 gmÀÇ ¼öÆò·ÂÀ» °¡ÇÏ¿© ÀÀ·Â ºÐÆ÷ ¾ç»ó°ú Å©±â¸¦ 3Â÷¿ø À¯ÇÑ¿ä¼Ò Çؼ® ÇÁ·Î±×·¥ÀÎ ANSYS¸¦ ÀÌ¿ëÇÏ¿© ºñ±³ÇÏ¿´´Ù. °ñ¿¡ ³ªÅ¸³ª´Â ÃÖ´ë ÀÀ·ÂÀº, ½Ä¸³°¢µµ¿Í ¹«°üÇÏ°Ô ¹Ì´ÏÀÓÇ÷£Æ®ÀÇ Á÷°æÀÌ Áõ°¡ÇÒ¼ö·Ï ÀÀ·ÂÀÌ °¨¼ÒÇÏ¿´°í, ´ëºÎºÐÀÇ ÀÀ·ÂÀÌ ÇÇÁú°ñ¿¡¼­ Èí¼öµÇ¾ú´Ù. ¶ÇÇÑ ¹Ì´ÏÀÓÇ÷£Æ®ÀÇ Á÷°æÀÌ Áõ°¡ÇÏ°í ½Ä¸³°¢µµ°¡ °¨¼ÒÇÔ¿¡ µû¶ó ÇÇÁú°ñ°ú Á¢Ã˸éÀûÀÌ À¯ÀǼº ÀÖ°Ô Áõ°¡ÇÏ¿´À¸³ª, ÇÇÁú°ñ¿¡ ³ªÅ¸³ª´Â ÃÖ´ëÀÀ·ÂÀº ½Ä¸³°¢µµ º¸´Ù ÇÇÁú°ñ Ç¥¸é°ú Á¢ÃËÇÏ´Â ¹Ì´ÏÀÓÇ÷£Æ® À§Ä¡°¡ ´õ À¯ÀÇÇÑ ¿¬°ü¼ºÀ» °¡Á³´Ù. ÀÌ»óÀÇ °á°ú´Â ¹Ì´ÏÀÓÇ÷£Æ® »ç¿ë ½Ã °ñ³» ÀÀ·Â ºÐÆ÷´Â ½Ä¸³°¢µµÀÇ °¨¼Òº¸´Ù´Â ¹Ì´ÏÀÓÇ÷£Æ® Á÷°æ Áõ°¡¿Í ¹Ì´ÏÀÓÇ÷£Æ®¿Í ÇÇÁú°ñ Ç¥¸éÀÇ Á¢ÃËÀ§Ä¡°¡ ¹Ì´ÏÀÓÇ÷£Æ®ÀÇ À¯Áö ¹× ¾ÈÁ¤¼º¿¡ ¿µÇâÀ» ÁֹǷΠ¹Ì´ÏÀÓÇ÷£Æ®ÀÇ ½Ä¸³ ½Ã ÀÌ¿¡ ´ëÇÑ °í·Á°¡ ÇÊ¿äÇÒ °ÍÀ¸·Î »ý°¢µÈ´Ù.

The present study was performed to evaluate the stress distribution on the diameter of the mini-implant and insertion angle to the bone surface. To perform three dimensional finite element analysis, a hexadron of 15{times}15{times}20mm^3 was used, with a 1.0 mm width of cortical bone. Mini-implants of 8 mm length and 1.2 mm, 1.6 mm, and 2.0 mm in diameter were inserted at 90^{circ},;75^{circ},;60^{circ},;45^{circ};and;30^{circ} to the bone surface. Two hundred grams of horizontal force was applied to the center of the mini-implant head and stress distribution and its magnitude were analyzed by ANSYS, a three dimensional finite element analysis program. The findings of this study showed that maximum von Mises stresses in the mini-implant and cortical and cancellous bone were decreased as the diameter increased from 1.2 mm to 2.0 mm with no relation to the insertion angle. Analysis of the stress distribution in the cortical and cancellous bone showed that the stress was absorbed mostly in the cortical bone, and little was transmitted to the cancellous bone. The contact area increased according to the increased diameter and decreased insertion angle to the bone surface, but maximum von Mises stress in cortical bone was more significantly related with the contact point of the mini-implant into the cortical bone surface than the insertion angle to the bone surface. The above results suggest that the maintenance of the mini-implant is more closely related with the diameter and contact point of the mini-implant into the cortical bone surface rather than the insertion angle.

Å°¿öµå

ÀÀ·Â ºÐÆ÷;±³Á¤¿ë ¹Ì´ÏÀÓÇ÷£Æ®;Á÷°æ;½Ä¸³°¢µµ

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

  

µîÀçÀú³Î Á¤º¸

SCI(E)
KCI
KoreaMed